Powered by RND
PodcastyNaukaAstroGeo - Geschichten aus Astronomie und Geologie

AstroGeo - Geschichten aus Astronomie und Geologie

Karl Urban und Franziska Konitzer
AstroGeo - Geschichten aus Astronomie und Geologie
Najnowszy odcinek

Dostępne odcinki

5 z 128
  • Aus und vorbei: Das Universum und sein Ende
    Zumindest darüber sind sich Forschende mehr oder weniger einig: Unser Universum gibt es nicht schon seit ewigen Zeiten – sondern es hat vor rund 13,8 Milliarden Jahren mit dem Urknall begonnen. Seitdem dehnt sich das Universum aus, es wird immer größer und kühlt sich immer weiter ab. Aber wie geht die Geschichte des Universums eigentlich weiter, und vor allem: Wie hört diese Geschichte auf? Wenn das Universum einen Anfang hat, sollte es dann nicht auch ein Ende geben? Zur allseitigen Beruhigung sei geschrieben, dass jegliche Enden des Universums in so unvorstellbar weiter Zukunft liegen, dass sie keinerlei Auswirkungen auf das Leben auf der Erde haben. Wir Menschen sind davon nicht betroffen. Analog zum Begriff des Urknalls, auf Englisch „Big Bang“, werden vor allem drei verschiedene potenzielle Schicksale für unser Universum diskutiert: Da wäre der „Big Crunch“, bei dem das Universum in einer Art kosmischer Symmetrie am Ende wieder in sich zusammenstürzt – eine Art umgekehrter Urknall. Bei einem „Big Rip“ hingegen würde das genaue Gegenteil eintreten und das Universum würde sich so schnell ausdehnen, dass es letztendlich zerreißt – seinen gesamten Inhalt eingeschlossen. Der „Big Freeze“ hingegen bezeichnet den Kältetod des Universums: Im expandierenden Universum würden einfach nach und nach die Lichter ausgehen, Galaxien wären in so weiter Ferne, dass jede Sterneninsel für sich allein durchs All driftet und das Universum würde immer größer, kälter und leerer werden. Bis irgendwann gar nichts mehr passiert – und auch nie wieder passieren wird. In dieser Folge des AstroGeo-Podcasts erzählt Franzi vom ultimativen Schicksal unseres Universums, was mit ihm am Ende der Zeit passiert – und was die mysteriöse Dunkle Energie damit zu tun hat, die derzeit dafür sorgt, dass sich das Universum beschleunigt ausdehnt.
    --------  
    1:18:05
  • Von Marskanälen zum Wolkenatlas: Dünne Luft auf dem Mars
    Am 15. Juli 1965 kommt es in den Räumen des Jet Propulsion Laboratory der NASA in Kalifornien zu einem Showdown: Drei Männer betrachten eine der ersten Aufnahmen der Marsoberfläche, welche die Raumsonde Mariner 4 nur wenige Stunde zuvor beim Vorbeiflieg aus der Nähe gemacht hatte. Ein Foto vom Mars – eigentlich ein großartiger Erfolg für die Wissenschaft! Und doch war jene Aufnahme eine riesige Enttäuschung – denn ein Bild sagt mehr als tausend Worte, und jenes Bild der Marsoberfläche sagte den NASA-Vertretern: Der Mars ist ganz anders als gedacht – und vor allem ist er kalt und tot. Das Bild zeigte, dass es wohl kein weit verbreitetes Leben auf dem Mars gibt, was vor allem mit seiner Atmosphäre zusammenhängt. In dieser Folge erzählt Karl eine kleine Geschichte der Mars-Atmosphäre. Die Astronomen der Antike sahen beim Mars zunächst nicht mehr als einen rötlichen Wandelstern, der in Schleifen übers Firmament läuft. Und während auch die ersten Astronomen der Neuzeit nur wenige Details des Planeten in Erfahrung bringen konnten, so waren sie doch überzeugt: Der Mars ist eine belebte Welt, die der Erde ähneln sollte. Doch bis ins 20. Jahrhundert hinein wussten Forscherinnen und Forscher lediglich: Die Tage auf dem Mars sind vergleichbar lang wie auf der Erde (24 Stunden und 37 Minuten), der Planet besitzt vermutlich Polkappen und Jahreszeiten. Der italienische Astronom Giovanni Schiaparelli hatte im 19. Jahrhunderte lange Linien beschrieben, die er canali nannte und die folgende Generationen über die Möglichkeit einer marsianischen Zivilisation spekulieren ließen. Doch die Voraussetzung für solches Leben auf dem Mars wäre, dass diese Außerirdischen Luft zum atmen hätten. Die Aufnahmen der NASA-Sonde Mariner 4 aus dem Jahr 1965 bereitete all diesen Mutmaßungen ein abruptes Ende: Auf ihnen erschien der Rote Planet als tote, kalte und tiefgefrorene Welt mit einer extrem dünnen Atmosphäre. Dass in der kaum vorhandenen Marsluft dennoch etwas passiert, wurde zwar früh erkannt, war aber nie genauer untersucht worden. Marsianische Wolken bestehen aus Eiskristallen und waren eher ein Störfaktor für Kameras, die eigentlich Krater, Canyons oder Flusstäler der festen Oberfläche fotografieren sollten. Erst 2018 gibt ein spanischer Doktorand Anlass, die Marswolken genauer zu untersuchen. Jorge Hérnandez-Bernal findet am Riesenvulkan Arsia Mons eine extrem lange Wolke, die über die letzten Jahrzehnte immer zu einer bestimmten Jahreszeit wiederkehrt. Diese Entdeckung von Hérnandez-Bernal motivierte ein Team um Daniela Tirsch vom Institut für Weltraumforschung des Deutschen Zentrums für Luft- und Raumfahrt genauer nachzusehen. Die europäische Raumsonde Mars Express hatte seit 2003 tausende Bilder gemacht. Und damit gelang etwas, was sich die NASA-Mitarbeitenden aus dem Jahr 1965 kaum hätten vorstellen können: der allererste Wolkenatlas einer außerirdischen Welt.
    --------  
    1:13:50
  • AstroGeoPlänkel: Gletscherflut, Geoengineering, Singularität
    In dieser Folge widmen sich Franzi und Karl dem Feedback zu den letzten drei Geschichten im AstroGeo Podcast. Hörer berichten, wo sie AstroGeo gehört haben, etwa bei einer Fahrradtour durch Frankreich oder im Zug bei der Fahrt quer durch Europa. In Folge 122 ging es um Seen tief unter dem Gletschereis der Antarktis und von Grönland, die künftig zum Problem werden könnten. Karl hatte erzählt, ob man einen rutschenden Gletscher trockenlegen könnte, indem man den darunterliegenden See abpumpt. Dazu gibt es eine korrigierte Zahl: Demnach wäre für die kritischsten Gletscherzungen „nur“ zehnmal mehr Flüssigkeit in Grönland und der Antarktis abzupumpen als heute an Erdöl an die Oberfläche gefördert wird (knapp 5 km³ Erdöl pro Jahr vs. 50 km³ Schmelzwasser pro Jahr). Darüber hinaus sprechen Franzi und Karl über den Hinweis, dass ein steigender Meeresspiegel heute noch das geringere Problem ist: Viele Städte sinken derzeit ab, weil unter ihnen zu viel Grundwasser gefördert wird. In den Rückmeldungen zu Franzis Folgen über Schwarze Löcher (AG123 und AG124) überwiegt begeistertes Lob: Viele finden die komplexen Inhalte zur Allgemeinen Relativitätstheorie und Quantenphysik hervorragend aufbereitet, manche wünschen sich jedoch mehr Vereinfachung. Es gibt eine physikalische Ergänzung zur Natur von Singularitäten und Franzi erklärt, warum Schwarze Löcher „keine Haare“ haben. Am Rande geht es auch um die Allgemeine Relativitätstheorie und die Frage, durch welche Effekte die hochgenauen Atomuhren auf Satelliten langsamer gehen als jene auf der Erde. Weitere Rückmeldungen betreffen alte Folgen – etwa Beobachtungen zur Nova in der Nördlichen Krone. Die Prognose aus Folge AG091 über einen Ausbruch im Jahr 2024 ist nicht eingetreten, was vermutlich an allzu schlechten Basisdaten liegt. Somit warten wir alle weiterhin auf den nächsten Ausbruch der Nova T Coronae Borealis. Zuletzt sprechen Franzi und Karl über andere Geologie-Podcasts. Karl kennt fast nur englischsprachige Produktionen und bittet um Mithilfe.
    --------  
    56:40
  • Cygnus X-1: Wie findet man ein Schwarzes Loch?
    Je nach Masse beenden Sterne ihre Entwicklung auf unterschiedliche Weisen. Ein Stern wie unsere Sonne – eher klein, eher gelb – endet als Weißer Zwerg. Massereichere Sterne hingegen verwandeln sich in Neutronensterne, die dichtesten Gebilde im Universum. Nur den massereichsten Sternen ist das wohl spektakulärste Schicksal vorbehalten: Sie kollabieren zu einem Schwarzen Loch. Weiße Zwerge und Neutronensterne können Astronominnen und Astronomen problemlos im All beobachten – aber Schwarze Löcher? Wie sollte man ein Schwarzes Loch beobachten können, das seinem Namen wirklich alle Ehre macht, da schließlich noch nicht einmal Licht ihm entkommen kann? Schwarze Löcher sind per Definition unsichtbar. Nachdem Forschende im Jahr 1939 die Existenz von Schwarzen Löchern vorhergesagt hatten, blieben diese zunächst ein rein theoretisches Gebilde. Wenn überhaupt, beschäftigten sich Mathematiker und theoretische Physiker damit, vor allem waren das die Liebhaber der Allgemeinen Relativitätstheorie. Astronomen und Astrophysikerinnen hingegen kümmerten sich nicht um Schwarze Löcher – denn noch war sich niemand sicher, dass es sie tatsächlich gibt. Das sollte sich erst in den 1960er-Jahren ändern. Damals wurde klar, dass Einsteins Allgemeine Relativitätstheorie nicht nur ein theoretisches Konstrukt ist, sondern sich auch an astronomischen Himmelsobjekten beobachten lässt. Da Schwarze Löcher eine Konsequenz aus der Allgemeinen Relativitätstheorie sind, stellte sich damit die Fragen, ob es sie tatsächlich gibt und falls ja, wie man sie überhaupt beobachten könnte. In dieser Folge erzählt Franzi, wie Astronominnen und Astronomen das erste Schwarze Loch entdeckt haben: eine helle Röntgenquelle namens Cygnus X-1 im Sternbild Schwan – und warum sie sich trotzdem lange Zeit nicht sicher sein konnten, dass es wirklich existierte.
    --------  
    1:17:19
  • Weiße Zwerge - die Rettung vor dem Schwarzen Loch?
    Heutzutage mögen Schwarze Löcher selbstverständlicher Teil des Weltalls sein, doch das war nicht immer so. Nachdem der deutsche Astrophysiker Karl Schwarzschild zu Beginn des 20. Jahrhunderts gezeigt hatte, dass Schwarze Löcher als Lösung der Einsteinschen Feldgleichungen der Allgemeinen Relativitätstheorie herauskommen, hatten Physiker in den folgenden Jahrzehnten nur ein Bestreben: Wie werden sie die merkwürdigen Objekte wieder los? Karl Schwarzschild hatte berechnet, dass ein Stern gar sonderbare Dinge mit der Raumzeit anstellt, wenn sein Volumen auf einmal so drastisch schrumpft, dass der Radius des Sterns unter dem sogenannten Schwarzschild-Radius liegt: Dann nämlich gäbe es jenseits dieses Radius` kein Entkommen mehr, hätten Licht oder Materie ihn einmal überquert. Die Raumzeit wäre zu stark gekrümmt, und im Inneren lauerte die Singularität: ein Ort mit unendlicher Dichte und noch vielerlei anderen Unendlichkeiten, über die sich selbst Albert Einstein am liebsten gar keine Gedanken machen wollte: Für ihn wäre es eine „Katastrophe“, wäre der Radius eines Körpers kleiner als sein Schwarzschild-Radius – würde ein Himmelskörper also zu dem werden, was wir heute als Schwarzes Loch bezeichnen. Da traf es sich gut, dass der Schwarzschild-Radius eines Sterns recht winzig ist: Bei der Sonne beträgt er nur wenige Kilometer. Und es sollte doch unmöglich sein, dass ein Stern einfach so zusammenstürzt und kleiner wird als dieser Radius – so glaubten viele Forschende? Tatsächlich würde ein Stern wie unsere Sonne einfach so unter ihrer eigenen Schwerkraft zusammenstürzen - wenn nicht der Strahlungsdruck der Kernfusion in ihrem Inneren einen Gegendruck erzeugen würde. Und das heißt: Vorerst bleibt die Sonne so groß wie sie ist. Aber was passiert eigentlich, wenn der Brennstoff eines Sterns am Ende seiner Entwicklung verbraucht ist? Was könnte einen solchen Stern davon abhalten, zu dem so „katastrophalen“ Schwarzen Loch zu kollabieren? In dieser Folge des AstroGeo-Podcasts erzählt Franzi, wie Weiße Zwerge und Neutronensterne den Kollaps eines Sterns zunächst aufhalten können – und wie sie deshalb das Universum fast vor der Existenz der Schwarzen Löcher bewahrt hätten.
    --------  
    1:45:51

Więcej Nauka podcastów

O AstroGeo - Geschichten aus Astronomie und Geologie

Im AstroGeo Podcast erzählen sich die Wissenschaftsjournalisten Franziskia Konitzer und Karl Urban regelmäßig Geschichten, die ihnen entweder die Steine unseres kosmischen Vorgartens eingeflüstert – oder die sie in den Tiefen und Untiefen des Universums aufgestöbert haben. Es sind wahre Geschichten aus Astronomie und Astrophysik, Geologie und Geowissenschaften.
Strona internetowa podcastu

Słuchaj AstroGeo - Geschichten aus Astronomie und Geologie, Radiolab i wielu innych podcastów z całego świata dzięki aplikacji radio.pl

Uzyskaj bezpłatną aplikację radio.pl

  • Stacje i podcasty do zakładek
  • Strumieniuj przez Wi-Fi lub Bluetooth
  • Obsługuje Carplay & Android Auto
  • Jeszcze więcej funkcjonalności
Media spoecznościowe
v7.23.13 | © 2007-2025 radio.de GmbH
Generated: 11/20/2025 - 3:02:09 PM